edge-plm-st8-cae-femap-teamcenterSlide thumbnail

- 3D Design
- Hybrid modelling
- 2D & 3D Drafting
- Rendering & Visualisation

CAD Software

CAD Software

Click to learn more...

edge-plm-st8-cae-femap-teamcenterSlide thumbnail

- Turning & Milling
- Multi axis machining
- Nesting Sheet Metal
- Post processors

CAM Software

CAM Software

Click to learn more....

edge-plm-st8-cae-femap-teamcenterSlide thumbnail

- Structural, Motion and Dynamic Analysis
- Simulation Data Management
- Flow Simulation
- Thermal Analysis
- Acoustic Simulation
- Multi-Physics Simulation
- Control System Simulation

CAE Simulation and Analysis

CAE Simulation and Analysis

Click to learn more....

edge-plm-st8-cae-femap-teamcenterSlide thumbnail

- Engineering Change Order Management
- Engineering data vaulting
- Document management
- Technical publications
- Manage multi-CAD

Product Data Management

Product Data Management

Click to learn more....

Transform your digital design and realize innovation

In a world of smart, connected products, where entire markets can vanish with a single innovation, manufacturers must take a new approach to business.

Some closely watch how products are being used, and feed data back from product utilization into product ideation and development in order to anticipate trends.
But even if you know what to make, you still have to make it. That’s why manufacturing – the realization phase of innovation – is vital in this new era.

Manufacturers must weave a digital thread through ideation, realization and utilization. It’s not enough to digitize. That just mimics processes digitally for incremental improvement.

You have to digitalize. Digitalization makes the digital thread of knowledge a proactive agent in driving your business. With a fully optimized “Digital Enterprise,” you are better equipped to initiate or respond to disruptive innovation.

To help you design smarter, we’re building a “Smart Innovation Portfolio” that delivers:

  • Engaged users who receive the right information at the right time – by transforming information so that only what’s relevant is delivered in a context suited to each person’s role.

  • Intelligent models that evolve throughout the process with the information necessary to optimize themselves for how they need to be built and how they should perform.

  • Realized products that achieve business goals through the integration of virtual product definition and real production execution.

  • An adaptive system that helps you efficiently deploy solutions today, while maintaining future flexibility.

EDGE plm software, Product Lifecycle Management specialists can help you with:


Hybrid CAD - Solid Edge

Solid Edge is a portfolio of affordable, easy-to-use software tools that address all aspects of the product development process- 3D design, simulation, manufacturing, design management, thanks to a growing ecosystem of apps.
Solid Edge combines the speed and simplicity of direct modeling with the flexibility & control of parametric design- made possible with synchronous technology.

sold edge st version


CAE Simulation and Analysis

Simcenter solutions deliver a unified, scalable, open and extensible environment for 3D CAE with connections to design, 1D simulation, test, and data management. Simcenter speeds the simulation process by combining best-in-class geometry editing, associative simulation modelling and multi-discipline solutions embedded with industry expertise.
simcenter australia


Machining- NX CAM Express

CAM Express is a modular, flexible configuration of numerical control (NC) programming solutions that allows you to maximize the value of your investments in the latest, most efficient and most capable machine tools. Easy to deploy and easy to learn, CAM Express provides powerful NC programming offering machining capabilities from 2.5 to 5 axis.
doodleincaustraliacomau3


PDM- Teamcenter Rapid Start

Teamcenter Rapid Start delivers the world’s most widely implemented product data management (PDM) solution, Teamcenter, preconfigured to utilize the industry best practices and the expertise of Siemens PLM Software. By choosing Teamcenter Rapid Start’s preconfigured capabilities, you minimize the costs of consulting & deployment, and get started with PDM quickly & cost-effectively.

Learn more about EDGE plm software:

EDGE plm software is a privately owned Australian provider of software solutions aimed at the Engineering and Manufacturing sectors. EDGE has been providing engineering design centric solutions since 2004 with over 500 customers across Australia and New Zealand. Typical solutions from EDGE would include the provision of software, maintenance, support, consulting and training services.

The EDGE software portfolio includes CAD, CAM, FEA & PDM solutions and EDGE fully supports and offers training and mentoring services on its entire portfolio. EDGE has been a business partner of UGS/Siemens since 2004. EDGE also configures and sells Dell hardware to assist our customers maximise their software investments. Read more about us…

Our Location

Our HQ Address:

EDGE plm software
16 / 94-102 Keys Rd
Moorabbin, Victoria 3189
Australia

Free Phone: 1300 883 653
Local Phone: 03 9532 0700
Fax: 03 9532 0788
Email: [email protected]

Talk to us now!

Ready to start designing better? Our gurus are standing by.

We can help help you to design better & faster in ways you never thought possible.
Talk to us now!

We offer a comprehensive product line

We tailor the right solution at the right budget

  • EDGE plm software is a solution provider of engineering design software and services.

  • We offer the full Siemens Mainstream Engineering product range, including Solid Edge, Femap, NX CAM & Teamcenter.

  • EDGE has been a selling and supporting PLM solutions for offer 11 years.

  • We have many years of training and mentoring experience.

  • We support Siemens Mainstream Engineering range in Australia & New Zealand.

  • We offer a free support help line for all users trialling Solid Edge or Femap.

  • We offer regular free training webinars and hints and tips sessions, plus regular newsletters.

  • We can tailor your training needs to your specific requirements either at your facility or ours.

  • Enjoy a hassle free support system, with a dedicated expert team. We’re ready to help!

Download a full trial here

Download a full 45 days Solid Edge/ Femap Trial

We believe you won't look back after you try it yourself.
Download a full trial here

Introducing Solid Edge ST: Re-imagine what’s possible

Build in Prototypes ways you never thought possible.

Your CAD software should help you work smarter, not harder. That’s why there’s Solid Edge, a hybrid 2D/3D CAD system that uses synchronous technology that finally frees you of the limitations of your traditional CAD software.

Want to edit dimensions easily? Re-use imported data without the hassle? They’re easy to do and more with Solid Edge. Solid Edge leverages synchronous technology, enabling your company to deliver breakthrough designs. Designers can accelerate model creation without engaging in design preplanning. They also are able to perform faster ECO edits by eliminating model regeneration, while increasing the re-use of imported 2D or 3D data.

Solid Edge has proven successful in helping companies reduce engineering costs through better re-use of 2D and 3D data. Imported assembly layouts can drive 3D product design where interference checking can solve fit and position problems before manufacturing. Synchronous technology can edit imported 3D models, reducing the need for redesign.

Feel free to contact us:

With Solid Edge you can build entire 3D digital prototypes and optimize your designs before production. You can design assemblies with machined, cast or stylized components and leverage process-specific applications to simplify frame, piping, tube, wiring, weldement, and mold tooling design.

The Solid Edge user interface removes the need for unnecessary decisions. Logical inference engines recommend next steps and intuitively consider affected geometry. The SmartStep ribbon bar guides you through the feature creation process, presenting design decisions in a logical sequence, letting you easily review and change decisions to optimize your designs.

Solid Edge offers a full suite of tools that let designers author, edit, distribute, and explore design alternatives. Engineering teams can package design and supporting data into a compact collaboration file, facilitating fast design iteration. Using XpresReview, a free, downloadable viewer, files can easily be shared with internal teams, vendors, and customers.

Read the latest news from our blog:

The End of the Powertrain Bias

Internal Combustion Engine vs. Electric Machine, this seems a famous game these days. Media, politicians, OEMs, car owners - all of them have their arguments and for one or the other reasons, they have their vision of where they place themselves in this fight. There is a lot of emotion and mistrust, misinformation and the claim of misinformation, aggression, and response. Diesel bashing here, pointing to insufficient range, burning batteries and recharging of plugin battery-electric vehicles with mobile ICE devices there.

 

The worrying thing to me is that even in our engineering world you get the impression that you have to choose and you have to choose apriori. It seems that even the world of powertrain engineers has become bipolar, you can either be pro-ICE or pro-E, you can either hug your internal combustion engine or tell the people ICE is dead, you can either tell people there is not enough Lithium on earth or oil, you say a V8 is music or it’s noise, you say too much NOx, Soot or CO2 stems from traffic or from power plants, there’s nothing in between. ICE engineers seem to fear someone takes away their beloved baby, E-guy seem to claim the work of thousands of engineers should go to the trash bin right away.

 

I call this the powertrain bias!

 

Now, honestly, like with many topics I have faced in my life I don’t know who is right and I would claim it’s not easy to tell that for anyone. We live in an increasingly complex world and there are many forces at work, legislation, customer expectation, politics, financial interests and finally human emotions. So, as an engineer, you try to rely on something that should give you the answer: pure science. Then you realize: even numbers can be bend, misinterpreted, miscommunicated. It’s clear that oil won’t last forever and that Lithium doesn’t. It’s clear that some may love the sound of an engine and others love the sound of silence. It’s like with anything – even in science - any party will come up with their study of proving they are right.

 

I truly believe it is this powertrain bias that is the most dangerous thing an engineer can jump onto in a world of incredibly fast-paced change.

 

That said, as powertrain engineers, we should share only one common goal and that is, make the move of a person from A to B as efficient, comfortable and – not to forget - enjoyable as possible thereby minimizing the negative impact on other people. I understand there are multiple trade-offs in this performance function and the weighting of the individual performance factors is a highly individual thing. Yet, we all should agree on one minimum consensus: As engineers, it is our job to push the limits of efficient, healthy, enjoyable and comfortable movement as far forward as we can without limiting ourselves in the design space by a-priori (bias) decisions.

 

 Blog_PowertrainBias_Teaser.png

 

Therefore here’s my call to all of you: Don’t get caught in that romantic vs. progressive powertrain trap! ICE guys, get over it and hug an electric machine, it won’t hurt. E-guys, step back and look at the amazing piece of engineering an IC engine effectively is. Let’s stay engineers in first place, push the Pareto front forward and make the best we can within the range of our expertise. Stay cool and fair when doing so. Get in touch with the other side and understand their reasoning. This is not a call for becoming emotionless, but it’s a call to reconsider what we should be emotional about: And that is creating great engineering value with our powertrain solutions. Here is my scientific study on the topic: In all times, 100% of all cars will have a powertrain!

Blog_PowertrainBias_InfoGraphic.png

 

So let’s all get together at the Simcenter Conference in Prague to celebrate the end of the powertrain bias. With two days of powertrain presentations from ICE to E, from system- through CFD simulation to test the table is all set. Siemens PLM is there to help you, with simulation- and test solutions on the ICE AND the E, there is no either-or in our portfolio, and hey, for those that are already in the middle of it, we have a solution for all you hybrids!

Together, we can make Prague the Woodstock of Powertrain Engineering. Looking forward to seeing you there.

 

With that, I leave it with a

 

“Peace!”,

the first powertrain-hippie on earth

 

 

 

[1] https://about.bnef.com/electric-vehicle-outlook/

[2] https://www.nytimes.com/2017/08/17/automobiles/wheels/internal-combustion-engine.html

[3] study by the first powertrain hippie on earth

 

 

Towards a unified Simcenter solution for electric machine design


Electric motor.jpgHaving a scalable model enables you to use your favorite system simulation tool for various simulation purposes, all along different design stages.

 

If I look in particular at electric machines, the possibilities are numerous:

  • Simple quasi-static machine models are well suited for power budget or energy management assessment.
  • Simple dynamic models are typically used for machine controls development.
  • Non-linear dynamic equivalent circuit models can give more insight into the motor behavior with high current or under fault conditions.
  • You can also include the machine spatial dependency to take into account the effects of the slots or the magnets shape. This will give you access to torsional vibration analysis and winding current distortions. It could help you validate a controller with a very realistic motor model at early development stages.
  • Co-simulation is an interesting solution in case you need to assess imbalance conditions or high frequency dynamics.Various levels of model complexity in Simcenter Amesim.pngVarious levels of model complexity in Simcenter Amesim

On the downside, setting up all those different models require much information which is not so easy to get. Datasheets provide partial data on the main machine behavior. To go further and to fully take benefit of the Simcenter Amesim Electric Motors and Drive solution, this is largely insufficient. To address this challenge, you can use Simcenter Amesim in combination with a finite element tool to obtain a reduced model. This is a major enhancement we focus on to reinforce this Simcenter Amesim solution.

 

Thus, Simcenter Amesim offers co-simulation capabilities with Altair Flux and JMAG-RT. Moreover,  recently released Simcenter Amesim 17 supports the import of reduced Simcenter SPEED models, as you can see in the following video:

 

 

 

What is the value for the Simcenter Amesim Electric Motors and Drive solution users? 

They can now smoothly pass from a finite element model to a system simulation model without spending hours trying to understand the different software conventions, developing or maintaining complex scripts.

   

The link with other Simcenter solutions such as Simcenter SPEED, Simcenter Motorsolve and Simcenter MAGNET will be continuously strengthened in the upcoming Simcenter Amesim versions. 

Neural networks & digital twins change the O&M in the wind industry

Today wind power represents 4.4% of the total generated power. By 2030, this is to increase up to 20%. The challenges for wind turbine manufacturers are wide-ranging: the aerodynamic performance of the blades, reduce weight, keep noise and vibration levels under control, ensure a durable design and improve its overall system performance.

 

The gearbox is the most critical part of the wind turbine. Either you send a technician up the turbine and do a manual check, or you attach sensors to the gearbox and monitor the results remotely on a computer. Both approaches work to anticipate failures and allow turbine owners to schedule for repairs. Obviously, this comes at a price. A high price. Can’t this be done more cost-effective?

 

Predicting the remaining useful lifetime of each wind turbine gearbox

 

Winergy, a global key provider for wind energy in Germany, teamed up with the Simcenter Engineering experts of Siemens PLM Software to estimate the remaining useful lifetime (RUL) of a complete wind park. Let’s be a bit more specific: 78 wind turbines – 35 SCADA channels – historical data stored over 4 years.

 

The Simcenter Engineering specialists tackled this issue by combining 2 approaches:

 

  1. Neural Networks
    The neural network was fed with information from different SCADA channels on the gearbox in combination with service data. Gearbox temperatures were defined as the most representative signals for a possible failure. Next, the neural network was trained on how a turbine reacts in healthy and faulty conditions. Winergy and Simcenter experts used the technique to accurately predict and detect failures early on.

  2. Digital Twin
    A digital twin makes the bridge between a virtual representation and the physical product. It helps to understand and predict product performance characteristics. Wind turbine modeling was combined with physical validation measurements in 1 turbine to validate the digital twin model. The digital twin model is fed with historic loads extracted from the SCADA in order to predict the remaining useful lifetime of the bearings and gear teeth in each gearbox.

 

This combined approach limits the need for physical prototypes, reduces development time, and improves the quality of the finalized product. 

 

Want to know more? Join us next week at the 11th Annual Offshore Wind Europe Conference & Exhibition in London, UK. Wim Hendricx, Simcenter Engineering expert for the Energy sector, will present this application case on November 28 at 9:20 AM.   

 

Wim-Hendricx-Winergy-quote.jpg

 

Interesting links:

 

Conference-banner.jpg

Is this the electric vehicle that we’ve all been waiting for?

Uniti One is an EV that just makes more sense.

I have to confess: I have caught the Uniti fever. It all started last April when Werner Custers and I shot a little movie at the Uniti headquarters in Lund, Sweden, a hip university town about 30 minutes from Malmo. At this point, Uniti Sweden was still oozing that start-up vibe, but, unlike other stories I have followed over the years, the idea of the Uniti One, well, to paraphrase CEO Lewis Horne, it just made sense. Needless to say, I was hooked.

 

 

You probably noticed that Uniti One is a different kind of car. In a way, it is more of a driving experience than an automobile. Sure, it is a completely wired EV with four wheels, but it is designed for the new era of high-tech car ownership that includes things like car-sharing, subscription programs and possibly delivery-on-the-spot autonomous programs.

 

Uniti One Fleet _ Photo by Karl-Fredrik von Hausswolff.jpg

 

Definitely “not reinventing the wheel”

But the cool thing about Uniti is that the team didn’t stop with just reinventing the EV. Everything was up for disruption in the design and development chain. Need your NX model in VR? Just run it through a gaming engine and put on the VR goggles to see what happens. Forget the formal post-design feedback groups. Just put the car in a well-known electronics retailer for a while and ask to-be consumers what they really think. This disruption meant that the team moved fast – really fast.

 

A key secret to the speedy design process was the fact that Uniti adopted the digital twin idea from day one. The working digital twin, based on NX and Simcenter, was one of the main reasons that a very small team of young engineers could prototype three vehicles in four short months.

 

So what’s next?

After its start-up success, the team knew they had to change gears, roll up their sleeves and work on a production-ready version of Uniti One. They also knew they needed some serious automotive experience on the engineering side. This is why Sally Povolotsky recently joined Uniti.

 

As the Uniti Vehicle Development Director, she is working with her team of experienced automotive engineers at Uniti’s new R&D center in the High-Performance Technology and Motorsport (HPTM) cluster located around Silverstone, the iconic British F1 Grand Prix track. With some serious street cred in the EV and automotive industry, Sally knows what it takes to get a car on the roads of Europe and beyond. (See the attached pdf for the full story.)

 

Uniti One _ small _ Photo by Karl-Fredrik von Hausswolff.jpg

 

Save the planet

So with Uniti One shaping up nicely and an Industry 4.0 digital factory vision in place, Lewis Horne and the Uniti team seem to have their new automotive ecosystem literally on the right track towards a workable and sustainable future. From our side, we will definitely keep our eyes on events in the UK and Sweden for you. To be continued…

 

P.S. By the way, if you caught the Uniti fever as well: you can pre-order yours online for 149 euro at uniti.earth.

 

 

 

 

 

Talk to us now!

Ready to start designing better? Our gurus are standing by.

We can help help you to design better & faster in ways you never thought possible.
Talk to us now!