Industry Case Study: Heavy Construction

Rido Planning Consulting Engineering

Solid Edge with synchronous technology helps pave way to new markets.

A passion for high-grade, curtain wall construction

Rido Planning Consulting Engineering, located in Poznań, Poland, was established to compete in today’s international construction markets. It specializes in building and metal-elevation construction projects.

With completed projects in Germany, the Netherlands, Great Britain, France and Dubai, Rido works in conjunction with construction companies and general contractors, architects and firms that excel at metal-elevation construction.

Within these projects, Rido assumes responsibility for managing the highly complex engineering design process, where new construction and related systems are vertically erected in accordance with required specifications and engineering coordinates; and co-operation occurs across multiple external institutions, including other consultants and various research institutes.

Responsibilities include preparing structural estimates and performing a variety of other tasks necessary to delivering today’s modern design and construction projects. The company also provides consultancy services, supervises construction work related to building elevations and delivers quality assurance services.

Rido prides itself on its experience in erecting spectacular glazed elevations, canopies, steel construction and glazed roofs. Rido’s most demanding projects include its work on Heathrow Airport Terminal 5 near London, CB31 Skyscraper (AXA) in the La Défense district of Paris, HighLight Towers in Munich, and both the Mahler 4 Office Tower and Atradius headquarters in Amsterdam.

“The design of a modern building raises several challenges and potential problems,” says Krzysztof Domiński, president of Rido. “Matching construction to the architect’s vision requires adequate know-how, skills, tools and time. Significantly, 3D technology played the key role in designing these buildings.”

Traditionally, 2D design software was used by designers and engineers as the standard tool for designing elevation elements. Unfortunately, this approach did not enable designers to predict the potential problems that sometimes occurred during the actual construction.

Domiński explains, “The benefits of 3D outweigh the problems and costs related to the use of 2D and now Solid Edge with synchronous technology makes adopting 3D much faster and easier. But there are still only a few companies in the world that can create good 3D designs. The key here is not just adequate tools, but know-how, skills and experience as well.”

A user-friendly hybrid

Rido began to look for 3D computer-aided design (CAD) software that would not only meet its engineering requirements, but also ensure the company’s ability to work in a global environment. This was especially important, since the company’s projects often involve specialists drawn from several organizations, who speak different languages and are based in multiple countries.

The company sought a software solution that would streamline the work of large design teams, while at the same time be user-friendly and quickly deliver high value. Indeed, return on investment was an important factor.

Taking these considerations into account, Rido selected and implemented Siemens PLM Software’s Solid Edge® software with synchronous technology, a proven 3D solution that is well regarded in the design industry. Solid Edge met all of Rido’s technical requirements by providing the performance and flexibility of direct modeling, while offering the automation and precision of parameterized design.

In addition, Solid Edge provides the hybrid functionality that the company needed to seamlessly migrate from 2D to 3D. In fact, Rido’s users were able to migrate to 3D on their own terms. Users started by turning simple 2D geometry into intelligent 3D models. Then they moved to hybrid 2D/3D design. Once comfortable, they applied the software’s full design capabilities.

Solid Edge was delivered by Siemens PLM Software partner GM System, which supported Rido’s users throughout all of the transition stages and equipped them with appropriate support tools and methodologies to ease the process. Essentially, it was the individual user who decided when to move to the next stage. The user-friendly interface of Solid Edge, similar to the tools in Microsoft Office® software, made the technology even more intuitive.

Domiński explains the importance of the transition: “The main challenge of using this software was to switch our thinking from a 2D to 3D design workflow. Solid Edge enabled us to respond to that challenge. We began using the third dimension relatively quickly, mastered the tool and started to accomplish our tasks even more effectively by taking advantage of the system’s full 3D design capabilities.”

Download The PDF Here

Download The PDF Here

Paving the way into new markets

“Solid Edge with synchronous technology increased Rido’s production capacity considerably,” says Domiński. “Solid Edge enables us to create more complex designs and deal with the most refined architectural ideas, which paves our way into new markets. There are projects where it is impossible to draw or measure certain elements in 2D. Our Solid Edge solution spares our clients problems and all of these nonstandard elements come out right.”

What’s more, it now takes designers much less time to find errors than it did in 2D, where the design process was limited to the construction stage. Just as importantly, both Rido and its clients benefit from the use of Solid Edge. Since the design is prepared in Solid Edge, Rido’s contractors are able to leverage a project’s design data during the production stage. Domiński explains, “Solid Edge has helped us to reduce the number of design errors. As a result, we save time and money for our clients; otherwise each error would require costly alterations during the construction stage.” Domiński estimates the customer gain to be a 15 percent faster turnaround, as well as a 15 percent cost reduction.

Solid Edge also has enabled Rido to accelerate downstream processes by providing a 3D model that manufacturing software can quickly leverage for use in driving computer numerical control (CNC) tools, machining centers and thermal cutting machines. At the same time, the company is able to accelerate the preparation of 2D documentation for its workshop, construction stage managers and clients.

Learn more about EDGE plm software:

EDGE plm software is a privately owned Australian provider of software solutions aimed at the Engineering and Manufacturing sectors. EDGE has been providing engineering design centric solutions since 2004 with over 500 customers across Australia and New Zealand. Typical solutions from EDGE would include the provision of software, maintenance, support, consulting and training services.

The EDGE software portfolio includes CAD, CAM, FEA & PDM solutions and EDGE fully supports and offers training and mentoring services on its entire portfolio. EDGE has been a business partner of UGS/Siemens since 2004. EDGE also configures and sells Dell hardware to assist our customers maximise their software investments. Read more about us…

Talk to us now!

Ready to start designing better? Our gurus are standing by.

We can help you to design better & faster in ways you never thought possible.
Talk to us now!

Join Our Solid Edge ST8 Training Courses:

EDGE plm understands the importance and training to the successful adoption of our products. However no two companies are the same and their training requirements often require a different or tailored approach which is why we have developed our flexible approach to training and mentoring.

We offer scheduled classroom-style training, bespoke training to suit customer requirements as well as one to one mentoring for any of our customers around Australia and New Zealand. Our Solid Edge training courses are created with the aim to get participants up to speed with current industry software quickly and effectively, giving you and your company the competitive edge.

Our experienced and qualified instructors run a range of training courses designed to suit your exact requirements, whether this consists of scheduled classroom training at our offices, customised courses delivered at your site, or online sessions.

Please call us on 1300 883 653 or send us an email [email protected] for our latest training schedule or to enquire about specialised training and mentoring services.

Solid Edge Foundation Part 1

This course is the follow on from the initial foundation course. It covers a foundation review, providing an opportunity to revisit and answer any questions from the initial course. It covers Drafting in [...]

Solid Edge Foundation Part 2

This course is the follow on from the initial foundation course. It covers a foundation review, providing an opportunity to revisit and answer any questions from the initial course. It covers Drafting in far [...]

Solid Edge Sheet Metal & Framing

The course focuses on sheet metal design tools, from the creation of simple sheet metal folded parts to the adding of deformation features and the subsequent creation of flat pattern blanks and 2D drawings. [...]

Solid Edge Surfacing

Delegates attending this course must have completed the foundation course or have been using Solid Edge for a minimum of 3 months. This course offers an introduction to the concepts of surface modelling, particularly [...]

Solid Edge Advanced Assembly

This course is designed for users that wish to improve their overall Assembly knowledge and students will be given instruction on how to make full use of the advanced assembly modelling functions for both [...]

Solid Edge Advanced Part Modelling

The course aims to improve the productivity of users when designing with Solid Edge. It includes a knowledge assessment test and sessions aimed at the correct approach to advanced modelling techniques for parts and [...]

Femap 101 Training Course

Talk to us to find more details and the next available course. This course designed to improve the productivity of users when designing with Femap. It includes a knowledge assessment test and sessions aimed at [...]

Read the latest news from our blog:

Bridging the timescale gap in CHT applications

It’s Sunday afternoon and I am pottering about in the kitchen cooking a Sunday roast. From the living room, I can hear my two children bickering about what they are going to play with. “Why don’t we play with Lego?” says the one. ”I want to play superheroes!” says the other. My husband is, unsuccessfully, trying to reason with them and get them to play together while at the same time sorting some paperwork. This is a typical weekend day for us. Everyone busy, on their own timescale, you could say, but trying to be together as a family. After all, isn’t that what the weekend is all about?

 

“Lunch is ready” I call from the kitchen, “time to set the table”. They both rush in, still continuing to talk over each other about the preferred game. We finally, sit around the table and the conversation turns more amiable. Now, we are talking about passing potatoes and veg and who wants which part of the chicken. Everyone agrees, the food is yummy!

 

In physics, as in life, not all processes are on the same timescale. In conjugate heat transfer (CHT) simulations that involve fluids and solids, they can actually be very different. Typically, fluids have fast transients and solids show slow temperature changes for longer periods. Accurate prediction of temperatures in solid components require long simulation times and it is essential for predicting thermal fatigue life. Such cases are turbine blades or engine blocks over the course of a typical use cycle. The challenge in these cases where we have large differences in time scale between fluids and solids is the large, almost prohibitive, computational cost.

 

The little Sunday routine of ours and its effect on our family life makes me think of this very issue and the new single simulation multi-timescale workflow for CHT introduced in Simcenter STAR-CCM+ v13.06. The new workflow introduces various features with the aim to eliminate the use of complicated macros. In Simcenter STAR-CCM+ v13.02 we introduced dedicated reports for fluid and solid and in Simcenter STAR-CCM+ v13.04 we improved the definition of Total Heat Flux to account for cases where radiation is turned on the fluid. And in this version, Simcenter STAR-CCM+ v13.06, we are introducing two additional very important features, an explicit mapped contact interface and solver specific stopping criteria.

 

The new explicit fluid-to-solid mapping links the different timescales by passing the right physical quantities, taking radiation and other thermal effects into consideration. In the case of transient flows, an efficient averaging mechanism can be employed on the thermal properties. It also enables coupling with the Finite Element solid energy solver also released in Simcenter STAR-CCM+ v13.06. This mainstreams multi-scale CHT simulations and eliminates user error. 

 

Related to this, the latest version also provides new solver-specific stopping criteria to aid simulations that run multiple solvers consecutively. Previous stopping criteria were shared by solvers, forcing users to write lengthy macros to change the values when switching solvers. Simcenter STAR-CCM+ v13.06 moves the ownership of stopping criteria from the user to the solvers and introduces fixed stopping criteria in a “delta” sense enabling automation and consecutive multiple solver iterations. This means that in a multi-timescale simulation the fixed number of iterations will run will run without manual interaction, every time the continua is activated.

 

The case used here to demonstrate the functionality is an exhaust manifold with the heat shield included. It’s a case of heating up the engine up to a certain temperature. Those simulations can take up a lot of time as the solid might take a few minutes to heat up while the fluid, if run transient, needs a time step of about 1e-4 to converge. In this case for simplicity we run the fluid as steady.

 

Use of solver specific stopping criteria takes advantage of the faster convergence of the fluid as simulation progresses, so fewer exchanges are needed. Several stopping criteria are used to trigger a rerun of the fluid. What's particularly nice with this set-up, is that the expensive fluid part of the simulation is initially using more iterations but as the simulation progresses the number of fluid iterations required to converge to the monitor-based stopping criteria is significantly reduced. It is obvious that the new solver-based stopping criteria provide the user with easy access to tools that enable speed up of expensive CHT simulations.

 

 

In the animation you can see the temperature changes with time. The vertical lines signify a fluid run. Exchange is happening through the explicit mapped contact interface when the solid temperature shows a certain delta of temperature. This way we make sure we don’t exchange when it is not needed, and the explicit mapped contact interface takes care of the averaging ensuring accurate passing of information either side.

 

Which brings me back to my family lunch on that beautiful Sunday afternoon. Makes me think of how a family lunch can bring us all together, just like the explicit mapped contact interface, and how we all need to have our very own control of our time. Lunch is now finished, and we are tidying-up. As we are finishing putting the plates away I can hear them laughing. “Let’s make superheroes with Lego” they say to each other and wander off happily.

 

 

dBirO56.jpg

 

The Multibody Dynamics of Bolts

Have you ever wondered about the physics of a roller coaster?

Or thought about how strong the bolts and joints have to be to withstand the impact of the racing cart. They better be strong if people are ridding them, otherwise, there will be life-threatening consequences. The same goes for the vehicles we drive. The bolted joints are exposed to dynamic structural loads and constant vibrations daily. One loose joint could not only be extremely costly but more importantly, could put someone's life in danger. That is why it is of the utmost importance to develop safe, reliable joint solutions. This is nothing to be concerned about because innovative technology is helping many companies determine the likely causes of joint failures and help secure them.

 

nord lock.png

 

We have established that joints are important. That is why Nord-Lock made it their goal to "provide maximum security for bolted joints." As mentioned above, innovative technology has made it so we reduce the reliance we have on physical testing. Nord Lock made this possible by adopting Simcenter 3D and NX Nastran to stay ahead of the game. Using Simcenter 3D motion software, Nord Lock is able to analyze stress states such as deformation, movement in joints, provide precision and reliability of NX Nastran solver and management of CAD. These simulations allow Nord-Lock to gain insight and validate internal business rules. For example, Simcenter is used to investigate failure situations. The weakness in joints generally have two main sources:

 

  1. Spontaneous loosening caused by vibrations and dynamic loading effects
  2. Slacking from preload loss as a result of settling and relaxation

Nord-Lock turned to digital technology as an alternative to physical testing which has helped them test both giant and small structures.

 

"We particularly appreciate the teams business expertise, their extensive knowledge of THE software and their availability." -Zouhair Chaib

 

Read the full case study here!

 

To learn more about what the experts at Nord-Lock Group have to say watch this video:

 

Simcenter Amesim 17: top 5 capabilities

We are proud to introduce Simcenter Amesim 17

 

Simcenter-Amesim-17-Boost_system-simulation-efficiency.pngThe latest release will help you increase system simulation efficiency through a seamless process integration, maximum modeling accuracy and easy access to digital twins.

 

Among many other enhancements, major development efforts have been put to help you address 5 key applications:

  • Electrification
  • Controls engineering
  • Vehicle systems and components performance engineering
  • Aircraft systems performance engineering
  • Interoperability

Discover Simcenter Amesim 17 in a nutshell:

 

 

Let us walk you through the main new capabilities. 

 

Electrification

 

  • Import of electric motor characteristics from Simcenter SPEED
  • Expansion of air conditioning system capabilities for battery cooling
  • Battery thermal run-away modeling and battery pre-sizing tool
  • Hybrid and electric vehicle model templates

In 10 years, hybrid and electric vehicles could represent about half of the automotive fleet. That’s why there have been major development efforts to support electrification. With the newest version, you can automatically import motor characteristics from the Simcenter SPEED electric motor design software and assess electric powertrain performance early in the development cycle. 

 

 

To safeguard proper battery operating conditions, you can link the battery cooling system with the air conditioning system. The new brazed plate heat exchanger component helps you easily check the capability of the cooling system to manage the battery and cabin thermal operation.

 

Further, for electric and hybrid vehicle design, Simcenter Amesim 17 comes with ready-to-use templates to assess consumption, range, cooling and drivability. These templates provide a good starting point for vehicle electrification projects by delivering parameter consistency and detailed internal combustion engine, transmission, electric drive, battery and cabin cooling subsystems models.

 

Controls engineering

 

  • Upgraded signal bus capability and statechart management
  • Cooling system functional components
  • Real-time compatible components in the fluid component design libraries
  • Tunable parameters for FMI 2.0 export

Controls engineering.pngIn the context of software-intensive products, Simcenter Amesim 17 offers new plant modeling capabilities to support controls design, validation and calibration. For instance, the signal bus feature has been reworked to optimize central processing unit (CPU) performance and the user experience. When modeling control units, you can now easily create, edit and manage supercomponents containing statecharts.

 

Additionally, the release comes with real-time compatible components for automotive cooling system design as well as for hydraulic, thermal-hydraulic and pneumatic component design.

 

 

Vehicle systems and components performance engineering

 

  • Exhaust calibration tool including optimization features
  • Engine manifold design study through full coupling with Simcenter STAR-CCM+
  • Kinematics and Compliance data generator
  • Cam profile definition from the valve lift
  • Hypoid gear component
  • Extended modeling capabilities for vane and gerotor pumps

For conventional and hybrid vehicles, a broad set of new capabilities in Simcenter Amesim 17 will help to tackle critical challenges, such as the real driving emissions (RDE) or Worldwide  harmonized Light vehicles Test Cycles (WLTC) standards. Among them, the exhaust calibration tool now enables accelerated test data import, batch processing and automated optimization of model calibration. 

 

 

Moreover, by coupling Simcenter Amesim with Simcenter STAR-CCM+, you can efficiently run an engine design study for operating points of interest. This allows you to assess intake line acoustics or the impact of manifold geometry on performance.

 

 

Aircraft systems performance engineering

 

  • Intuitive and detailed jet engine performance analysis
  • Fuel systems and flight dynamics coupling
  • Fuel tank mapping from CAD
  • Model templates for landing gear and flap systems

In support of the aerospace and defense industry, Simcenter Amesim 17 offers unique virtual integrated aircraft (VIA) capabilities to frontload system integration, electrify propulsion systems and streamline jet engine design. It enables rapid modeling of compressors and turbines with variable geometry as well as assessing mixture composition corrections and degradation performance.

 

Since fuel represents a large portion of the aircraft weight, it is critical to understand its impact on handling qualities. You can now quickly assess the aircraft mass balance and trajectory while accounting for its tight coupling with the fuel system.

 

 

Moreover, Simcenter Amesim now enables you to generate fuel tank maps from CAD geometry. Therefore, you can extract the fuel inertia tensor for coupling with flight dynamics, and tank wet areas for thermal management optimization.

 

Interoperability

 

  • Embedded Simcenter STAR-CCM+ technology for enhanced cabin air flow modeling
  • Ego vehicle modeling for ADAS/AD validation with Simcenter Prescan
  • Simcenter Amesim - Simcenter Flomaster co-simulation
  • Model-based system testing through interoperability with Simcenter Testlab Neo software
  • Direct access to Teamcenter workflows in Simcenter Amesim

 

To enable seamless process integration and maximize modeling accuracy, Simcenter Amesim 17 further extends synergies within the Simcenter portfolio.

 

For instance, a tight link with Simcenter STAR-CCM+ allows capturing internal 3D flows in the car cabin to rapidly optimize thermal comfort.

  Interoperability.png

 

   

For autonomous vehicle validation, the integration with Simcenter Prescan enables you to accurately capture the ego vehicle’s behavior in terms of ride, handling and fuel economy.

 

 

 

In addition, a direct connection between Simcenter Amesim and Teamcenter helps improve traceability: you can now easily manage different versions of Simcenter Amesim libraries within Teamcenter.

 

 

 

Stay tuned

 

Later this week we will introduce you to Simcenter Webapp Server, an easy-to-use and cost-effective web-based solution which will help deploy system simulation throughout your company.

Plus, don’t miss our blog post on new capabilities of Simcenter Embedded Software Designer 17.

 

Download Simcenter Amesim 17

Explore the System Simulation Knowledge Base

Discuss with your peers and our experts on the System Simulation Forum

Webinar: Get on top of your game with the newest TPA methods

When I first joined Siemens PLM Software, Dirk De Vis, Vice-President of Simcenter Engineering and Consulting services, explained me the different types of projects his engineering team executes. Before anything else, he put a glass of water on the table and slammed his fist on the table. Obviously, the water was disturbed, splashing over the edge of the glass. My first notion of the source-transfer-receiver approach…

 

As you understand from this example, a noise and vibration issue originates from a source, which is transferred via one (or more) transfer paths to a given receiver location. Transfer path analysis, or in short TPA, is a methodical approach to vibro-acoustic design. It enables you to quantify the various sources and their paths, figure out which are important, which contribute to the noise issues and which ones cancel each other out.

 

The source-transfer-receiver concept nor TPA approach are new. All over the world, automotive engineers apply it to investigate and understand a product’s noise, vibration & harshness (NVH) performance. Different TPA methods are available: test-based and/or simulation-based. The preferred methodology depends on the structure, single or multi-reference sources, and the stage of the development.

 

Although, traditional approaches to transfer path analysis such as: airborne loads estimation, acoustic source quantification, structure-borne loads estimation, multi-reference TPA and energetic power-based ASQ are still relevant and widely employed, new methods are being developed.

Main-visual-TPA-webinar.jpgLatest technologies to quantify the various sources and their contributions to noise and vibrations.At Simcenter, you’ll find engineers with unparalleled NVH experience. And they don’t sit still. New methodologies are being tried out and, if successful, integrated in the daily work and projects. If our customers agree? Absolutely!

 

Customers on top of their game!

Faster results, more accurate, better product refinement, and as a consequence faster troubleshooting at reduced cost, our customers are on top of their game. They apply TPA to benchmarking and target setting, vehicle development and pass-by noise engineering. Additionally, these new TPA methods empower suppliers to predict how their system will perform not just in one vehicle, but in a whole series of different variants. Component-based TPA using blocked forces is a prime example of how new TPA methodologies put the relationship between OEMs and suppliers in a completely new perspective.

 

On November 20, Automotive Solution Manager and NVH expert, Steven Dom, presents a live webinar: Better & faster vehicle NVH insights using the latest transfer path analysis methods. He will explain the range of methods from traditional mount stiffness and matrix inversion approaches over OPAX, strain-based TPA and time-domain TPA to model-based TPA and component-based TPA, illustrated with application examples.

STeven-Dom-quote-blocked-forces.jpg

 

Register here for the webinar and learn how to:

  • Obtain an overview of the different TPA methodologies and their applications
  • Improve road noise and comfort using strain sensors
  • Investigate transient effects applying time-domain and model-based TPA
  • Predict NVH behavior of source-components before integration using component-based TPA
     

Live webinar: Better & faster vehicle NVH insights using the latest transfer path analysis methods

https://www.plm.automation.siemens.com/global/en/webinar/transfer-path-analysis-tpa/44276

Testimonials

“Using Solid Edge with synchronous technology I can actually do many more iterations now that I wasn’t able to do before. And because of that, the cost of the product comes down. The weight of the product comes down. The performance goes up. The warranty is a lot longer. Quality loves it. We love it. The profit margin loves it.”
John Winter , Mechanical Engineering Manager, Bird Technologies
“Siemens’ synchronous solver overcomes the order dependencies that have plagued history-based CAD programs by solving for the explicit and inferred constraints at the same time. The synchronous solver doesn’t use a history tree, but rather holds user-defined constraints in groups associated with the surfaces to which they apply…Ultimately, though, I believe this to be a transformative technology – one that represents an important inflection point in the CAD industry. If you hear someone say ‘that’s nothing new,’ don’t believe them. Synchronous technology is a big deal.”
Evan Yares, CAD Industry Analyst
“Synchronous technology breaks through the architectural barrier inherent in a history-based modeling system,” “Depending on model complexity and how far back in the history that edit occurs, users will see dramatic performance gains. A 100 times speed improvement could be a conservative estimate.”
Dr. Ken Versprille, PLM Research Director, CPDA
Talk to us now!

Ready to start designing better? Our gurus are standing by.

We can help help you to design better & faster in ways you never thought possible.
Talk to us now!