Industry Case Study: Medical Devices & Pharmaceuticals

Alpha Omega

Improving patient lives through advanced brain surgery technology.

Revising Alpha Omega’s flagship product was a major design and engineering challenge

Based in Israel, Alpha Omega is in the brain surgery business, developing products such as the Neuro Omega, an advanced micro-electrode recording (MER) system used in neurosurgery. The system provides electro-physiological recording and deep brain stimulation (DBS) capabilities to help surgical teams locate precise targets in the brain for implanting electrodes that carry small electrical impulses. The pulses help treat movement disorders such as Parkinson’s disease. Alpha Omega’s systems are in use at more than 500 hospitals and research centers throughout the world.

Developing the new version of the Neuro Omega was the collaborative effort of an interdisciplinary team comprised of product experts and designers from Alpha Omega, designers from Alon Razgour Design Studio and mechanical engineers from GEOMATRIX smart engineering solutions. The entire project was led by Luai Asfour, development manager at Alpha Omega. The “common language” used by all three companies throughout the development process was Solid Edge® software – the most complete hybrid 2D/3D CAD system that uses synchronous technology for accelerated design, faster change, and improved imported re-use – from product lifecycle management (PLM) specialist Siemens PLM Software.

“We wanted to transform a somewhat dated design to a new system with new features; creating an advanced medical look, with excellent

“Initially, the focus was on achieving a useful, basic design, enabling doctors to easily use the technology in hospital operating rooms,” says Alon Razgour, president of Alon Razgour Design Studio. “The design had to accommodate the routing of the system’s many cable inputs and outputs, as well as ease of use for the doctors using it. Yet, during our research, something gave us the haunting feeling that there was something we were missing.”

Shipping the existing system caused a bottleneck

That “something” was that the existing product was somewhat unwieldy from a demonstration and marketing standpoint. Conducting product demonstrations was time-consuming because the system contained so many bulky components that all had to be shipped, which could take up to four days. The sales representative had to supervise the loading, receiving, pickup and transport of the system to the demonstration location for assembly, which took even more time. “It was clear that the time it took to transport the Neuro Omega system for demonstration purposes was obstructing the product’s success,” says Oren Gargir, Neuro Omega product manager.

Razgour points out, “This realization led us to redesign the product from its core, even before we made any design changes with regard to the product’s usability and functionality.”

The development team’s vision was to recreate the Neuro Omega as a system that can be used in the operating room (OR) on a designated cart, as well as taken onto a plane by a sales representative, thereby eliminating shipping of separate components and reducing the available time between demos. “Keeping in mind that our goal is to have the same product serve both as the demonstration machine and as the final product to be sold to the hospital, we stripped the system from its monitors, speakers and computers and extracted the product’s main core,” says Razgour. “We proceeded by placing all the internal electronics and connectors in the Solid Edge virtual space, crowding them together without a defined boundary. Then we experimented with positioning the components in search of the optimal configuration.”

A stand-alone unit design soon emerged; ready to be connected to generic computers, monitors and speakers for use, either during sales demonstrations or in the OR. The system is mounted onto a cart and includes all the components necessary for operational use.

Satisfying four different users
In designing the system’s fully assembled state, the main focus was the multiple probes connecting the patient to the machine, as well as the probes connecting the machine to other instruments that process information arriving from the Neuro Omega. The design addresses these needs with the machine’s diamond-like shape, giving it two front facets, both with screens and plug-in hubs. Each surface faces the area in the OR relevant to its role; one faces the patient’s bed and the other away from it.

The GEOMATRIX, Razgour and Alpha Omega team designed the Neuro Omega not only for Alpha Omega, but for use by four different types of users including the assembler of the machine, the person who demonstrates the machine to prospective customers, the physician in the OR, as well as the person who maintains it. “We achieved all of it, without having to compromise the design in any way,” says Razgour.

He feels that Solid Edge is ideal for industrial design. “Designers need to experiment or ‘play’ with things like composition, morphology, shaping, styling, lines and patterns,” Razgour says. “We need to explore various aesthetic options that convey different emotional experiences. The great advantage of using Solid Edge is in the possibilities you can try out, by changing and rearranging aspects of the design. You can make swift adjustments in surfaces and volumes, with an ease that resembles playing with modeling clay – giving you immediate feedback to assist in decisionmaking. This freedom makes Solid Edge especially designer-friendly.”

“Solid Edge gives you a lot of flexibility,” says Aviv Antebi, CEO of GEOMATRIX. “In the past, with other systems, the bottleneck was the software. Just to make a simple change required us to think about using the software instead of just making the change. Using Solid Edge, you don’t have to think about how to use the software to make a change; you just do it.”

Download The PDF Here

Download The PDF Here

Special engineering challenges

The Neuro Omega development team also had to make sure the system could comply with electromagnetic compatibility (EMC) testing requirements. “Reducing the size of the electronic cards system and components required us to conduct thermal testing to ensure the unit won’t overheat,” says Gargir.

Antebi adds, “Working closely with the development team, our engineers mapped the system properties and specifications, which allowed us to analyze the technological challenges we faced in-depth.”

The next phase was the most critical: understanding the engineering needs and design requirements. “Without this step, we were like a marathon runner who does not know the race track,” says Antebi.

“This step drew upon our development engineers’ experience and analytical ability. We worked on each assemblage separately and built a number of concepts schematically, each of which had to correspond to the design while also remaining fully functional and usable.

“One of the things that made our job easier in working with Solid Edge was the ability to change parts quickly in the assembly environment, which enabled us to see the results of product changes easily without the need for complicated, time-consuming editing,” says Antebi.

“The design challenges required pushed us to stretch the Solid Edge sheet metal environment almost to the limit, in order to build unique forms. This was an extraordinary achievement.”

Designing the system’s inner functionality required innovative thinking as well, including managing large circuits, power supplies, complex wiring and radio frequency interference (RFI) shielding. Alpha Omega’s requirement for easy maintenance, including disassembly and assembly of two internal circuits, was another unique engineering challenge.

Antebi notes, “The customer’s requirements meant thinking ‘outside the box’ and, by brainstorming, led by development manager Luai Asfour, went above and beyond to solve every problem. Using various capabilities of Solid Edge software, especially synchronous technology, allowed us to work much faster than ever before.”

“Another significant issue that Solid Edge helped us with was the ability to plan and adjust the design for manufacturing,” says Razgour. “After we found a manufacturer who could handle the work, we had to make additional adjustments and changes. Here, too, the ability to use Solid Edge to make quick changes with no damage or impact on the hierarchy of parts and other features helped significantly shorten the development process.”

Entire project completed in just five months

Today, sales representatives can bring the Neuro Omega system with them on an airplane as checked luggage instead of having to ship it separately. The system is now 17X17X15 inches in size, and weighs a little over 25 kilograms (55 pounds). The entire system, including generic computers, monitors and speakers, are placed on a cart and then used in the OR. “What truly enabled us to succeed is the joint work of all members of the development team using Solid Edge,” says Razgour.

“At each crucial point, Solid Edge allowed us to make changes without compromising existing data and without impairing the hierarchy of the system’s parts and features. This not only protected, but actively supported, the transfer of the design into its realization phase and even significantly shortened the process.

“Alpha Omega built only one physical prototype and used Solid Edge to make quick changes to parts in the assembly. Solid Edge helped us easily see, without the need for tedious and time-consuming editing of the project’s history tree, how these changes would affect the final product.

”Our client’s standards were extremely high, as were our own. The solution needed to align with numerous requirements. Solid Edge with synchronous technology enabled us to work at a pace much faster than ever before, aiding us throughout the process in piecing together all elements and assisting us in adapting the planning and design to meet intricate manufacturing requirements. After we started getting ready for the production stage, Alpha Omega asked us to make a few adjustments. In the not-too-distant past, this would have meant the re-opening of the design, with all changes affecting the whole system and creating new problems to solve,” says Razgour.

Research is currently underway to explore the use of the Neuro Omega machine in handling other conditions that may benefit from DBS treatment, including obsessive compulsive disorder, depression, Alzheimer’s and epilepsy.

Talk to us now!

Ready to start designing better? Our gurus are standing by.

We can help you to design better & faster in ways you never thought possible.
Talk to us now!

Join Our Solid Edge ST8 Training Courses:

EDGE plm understands the importance and training to the successful adoption of our products. However no two companies are the same and their training requirements often require a different or tailored approach which is why we have developed our flexible approach to training and mentoring.

We offer scheduled classroom-style training, bespoke training to suit customer requirements as well as one to one mentoring for any of our customers around Australia and New Zealand. Our Solid Edge training courses are created with the aim to get participants up to speed with current industry software quickly and effectively, giving you and your company the competitive edge.

Our experienced and qualified instructors run a range of training courses designed to suit your exact requirements, whether this consists of scheduled classroom training at our offices, customised courses delivered at your site, or online sessions.

Please call us on 1300 883 653 or send us an email [email protected] for our latest training schedule or to enquire about specialised training and mentoring services.

Solid Edge Foundation Part 1

This course is the follow on from the initial foundation course. It covers a foundation review, providing an opportunity to revisit and answer any questions from the initial course. It covers Drafting in [...]

Solid Edge Foundation Part 2

This course is the follow on from the initial foundation course. It covers a foundation review, providing an opportunity to revisit and answer any questions from the initial course. It covers Drafting in far [...]

Solid Edge Sheet Metal & Framing

The course focuses on sheet metal design tools, from the creation of simple sheet metal folded parts to the adding of deformation features and the subsequent creation of flat pattern blanks and 2D drawings. [...]

Solid Edge Surfacing

Delegates attending this course must have completed the foundation course or have been using Solid Edge for a minimum of 3 months. This course offers an introduction to the concepts of surface modelling, particularly [...]

Solid Edge Advanced Assembly

This course is designed for users that wish to improve their overall Assembly knowledge and students will be given instruction on how to make full use of the advanced assembly modelling functions for both [...]

Solid Edge Advanced Part Modelling

The course aims to improve the productivity of users when designing with Solid Edge. It includes a knowledge assessment test and sessions aimed at the correct approach to advanced modelling techniques for parts and [...]

Femap 101 Training Course

Talk to us to find more details and the next available course. This course designed to improve the productivity of users when designing with Femap. It includes a knowledge assessment test and sessions aimed at [...]

Read the latest news from our blog:

The End of the Powertrain Bias

Internal Combustion Engine vs. Electric Machine, this seems a famous game these days. Media, politicians, OEMs, car owners - all of them have their arguments and for one or the other reasons, they have their vision of where they place themselves in this fight. There is a lot of emotion and mistrust, misinformation and the claim of misinformation, aggression, and response. Diesel bashing here, pointing to insufficient range, burning batteries and recharging of plugin battery-electric vehicles with mobile ICE devices there.


The worrying thing to me is that even in our engineering world you get the impression that you have to choose and you have to choose apriori. It seems that even the world of powertrain engineers has become bipolar, you can either be pro-ICE or pro-E, you can either hug your internal combustion engine or tell the people ICE is dead, you can either tell people there is not enough Lithium on earth or oil, you say a V8 is music or it’s noise, you say too much NOx, Soot or CO2 stems from traffic or from power plants, there’s nothing in between. ICE engineers seem to fear someone takes away their beloved baby, E-guy seem to claim the work of thousands of engineers should go to the trash bin right away.


I call this the powertrain bias!


Now, honestly, like with many topics I have faced in my life I don’t know who is right and I would claim it’s not easy to tell that for anyone. We live in an increasingly complex world and there are many forces at work, legislation, customer expectation, politics, financial interests and finally human emotions. So, as an engineer, you try to rely on something that should give you the answer: pure science. Then you realize: even numbers can be bend, misinterpreted, miscommunicated. It’s clear that oil won’t last forever and that Lithium doesn’t. It’s clear that some may love the sound of an engine and others love the sound of silence. It’s like with anything – even in science - any party will come up with their study of proving they are right.


I truly believe it is this powertrain bias that is the most dangerous thing an engineer can jump onto in a world of incredibly fast-paced change.


That said, as powertrain engineers, we should share only one common goal and that is, make the move of a person from A to B as efficient, comfortable and – not to forget - enjoyable as possible thereby minimizing the negative impact on other people. I understand there are multiple trade-offs in this performance function and the weighting of the individual performance factors is a highly individual thing. Yet, we all should agree on one minimum consensus: As engineers, it is our job to push the limits of efficient, healthy, enjoyable and comfortable movement as far forward as we can without limiting ourselves in the design space by a-priori (bias) decisions.




Therefore here’s my call to all of you: Don’t get caught in that romantic vs. progressive powertrain trap! ICE guys, get over it and hug an electric machine, it won’t hurt. E-guys, step back and look at the amazing piece of engineering an IC engine effectively is. Let’s stay engineers in first place, push the Pareto front forward and make the best we can within the range of our expertise. Stay cool and fair when doing so. Get in touch with the other side and understand their reasoning. This is not a call for becoming emotionless, but it’s a call to reconsider what we should be emotional about: And that is creating great engineering value with our powertrain solutions. Here is my scientific study on the topic: In all times, 100% of all cars will have a powertrain!



So let’s all get together at the Simcenter Conference in Prague to celebrate the end of the powertrain bias. With two days of powertrain presentations from ICE to E, from system- through CFD simulation to test the table is all set. Siemens PLM is there to help you, with simulation- and test solutions on the ICE AND the E, there is no either-or in our portfolio, and hey, for those that are already in the middle of it, we have a solution for all you hybrids!

Together, we can make Prague the Woodstock of Powertrain Engineering. Looking forward to seeing you there.


With that, I leave it with a



the first powertrain-hippie on earth






[3] study by the first powertrain hippie on earth



Towards a unified Simcenter solution for electric machine design

Electric motor.jpgHaving a scalable model enables you to use your favorite system simulation tool for various simulation purposes, all along different design stages.


If I look in particular at electric machines, the possibilities are numerous:

  • Simple quasi-static machine models are well suited for power budget or energy management assessment.
  • Simple dynamic models are typically used for machine controls development.
  • Non-linear dynamic equivalent circuit models can give more insight into the motor behavior with high current or under fault conditions.
  • You can also include the machine spatial dependency to take into account the effects of the slots or the magnets shape. This will give you access to torsional vibration analysis and winding current distortions. It could help you validate a controller with a very realistic motor model at early development stages.
  • Co-simulation is an interesting solution in case you need to assess imbalance conditions or high frequency dynamics.Various levels of model complexity in Simcenter Amesim.pngVarious levels of model complexity in Simcenter Amesim

On the downside, setting up all those different models require much information which is not so easy to get. Datasheets provide partial data on the main machine behavior. To go further and to fully take benefit of the Simcenter Amesim Electric Motors and Drive solution, this is largely insufficient. To address this challenge, you can use Simcenter Amesim in combination with a finite element tool to obtain a reduced model. This is a major enhancement we focus on to reinforce this Simcenter Amesim solution.


Thus, Simcenter Amesim offers co-simulation capabilities with Altair Flux and JMAG-RT. Moreover,  recently released Simcenter Amesim 17 supports the import of reduced Simcenter SPEED models, as you can see in the following video:




What is the value for the Simcenter Amesim Electric Motors and Drive solution users? 

They can now smoothly pass from a finite element model to a system simulation model without spending hours trying to understand the different software conventions, developing or maintaining complex scripts.


The link with other Simcenter solutions such as Simcenter SPEED, Simcenter Motorsolve and Simcenter MAGNET will be continuously strengthened in the upcoming Simcenter Amesim versions. 

Neural networks & digital twins change the O&M in the wind industry

Today wind power represents 4.4% of the total generated power. By 2030, this is to increase up to 20%. The challenges for wind turbine manufacturers are wide-ranging: the aerodynamic performance of the blades, reduce weight, keep noise and vibration levels under control, ensure a durable design and improve its overall system performance.


The gearbox is the most critical part of the wind turbine. Either you send a technician up the turbine and do a manual check, or you attach sensors to the gearbox and monitor the results remotely on a computer. Both approaches work to anticipate failures and allow turbine owners to schedule for repairs. Obviously, this comes at a price. A high price. Can’t this be done more cost-effective?


Predicting the remaining useful lifetime of each wind turbine gearbox


Winergy, a global key provider for wind energy in Germany, teamed up with the Simcenter Engineering experts of Siemens PLM Software to estimate the remaining useful lifetime (RUL) of a complete wind park. Let’s be a bit more specific: 78 wind turbines – 35 SCADA channels – historical data stored over 4 years.


The Simcenter Engineering specialists tackled this issue by combining 2 approaches:


  1. Neural Networks
    The neural network was fed with information from different SCADA channels on the gearbox in combination with service data. Gearbox temperatures were defined as the most representative signals for a possible failure. Next, the neural network was trained on how a turbine reacts in healthy and faulty conditions. Winergy and Simcenter experts used the technique to accurately predict and detect failures early on.

  2. Digital Twin
    A digital twin makes the bridge between a virtual representation and the physical product. It helps to understand and predict product performance characteristics. Wind turbine modeling was combined with physical validation measurements in 1 turbine to validate the digital twin model. The digital twin model is fed with historic loads extracted from the SCADA in order to predict the remaining useful lifetime of the bearings and gear teeth in each gearbox.


This combined approach limits the need for physical prototypes, reduces development time, and improves the quality of the finalized product. 


Want to know more? Join us next week at the 11th Annual Offshore Wind Europe Conference & Exhibition in London, UK. Wim Hendricx, Simcenter Engineering expert for the Energy sector, will present this application case on November 28 at 9:20 AM.   




Interesting links:



Is this the electric vehicle that we’ve all been waiting for?

Uniti One is an EV that just makes more sense.

I have to confess: I have caught the Uniti fever. It all started last April when Werner Custers and I shot a little movie at the Uniti headquarters in Lund, Sweden, a hip university town about 30 minutes from Malmo. At this point, Uniti Sweden was still oozing that start-up vibe, but, unlike other stories I have followed over the years, the idea of the Uniti One, well, to paraphrase CEO Lewis Horne, it just made sense. Needless to say, I was hooked.



You probably noticed that Uniti One is a different kind of car. In a way, it is more of a driving experience than an automobile. Sure, it is a completely wired EV with four wheels, but it is designed for the new era of high-tech car ownership that includes things like car-sharing, subscription programs and possibly delivery-on-the-spot autonomous programs.


Uniti One Fleet _ Photo by Karl-Fredrik von Hausswolff.jpg


Definitely “not reinventing the wheel”

But the cool thing about Uniti is that the team didn’t stop with just reinventing the EV. Everything was up for disruption in the design and development chain. Need your NX model in VR? Just run it through a gaming engine and put on the VR goggles to see what happens. Forget the formal post-design feedback groups. Just put the car in a well-known electronics retailer for a while and ask to-be consumers what they really think. This disruption meant that the team moved fast – really fast.


A key secret to the speedy design process was the fact that Uniti adopted the digital twin idea from day one. The working digital twin, based on NX and Simcenter, was one of the main reasons that a very small team of young engineers could prototype three vehicles in four short months.


So what’s next?

After its start-up success, the team knew they had to change gears, roll up their sleeves and work on a production-ready version of Uniti One. They also knew they needed some serious automotive experience on the engineering side. This is why Sally Povolotsky recently joined Uniti.


As the Uniti Vehicle Development Director, she is working with her team of experienced automotive engineers at Uniti’s new R&D center in the High-Performance Technology and Motorsport (HPTM) cluster located around Silverstone, the iconic British F1 Grand Prix track. With some serious street cred in the EV and automotive industry, Sally knows what it takes to get a car on the roads of Europe and beyond. (See the attached pdf for the full story.)


Uniti One _ small _ Photo by Karl-Fredrik von Hausswolff.jpg


Save the planet

So with Uniti One shaping up nicely and an Industry 4.0 digital factory vision in place, Lewis Horne and the Uniti team seem to have their new automotive ecosystem literally on the right track towards a workable and sustainable future. From our side, we will definitely keep our eyes on events in the UK and Sweden for you. To be continued…


P.S. By the way, if you caught the Uniti fever as well: you can pre-order yours online for 149 euro at







“Using Solid Edge with synchronous technology I can actually do many more iterations now that I wasn’t able to do before. And because of that, the cost of the product comes down. The weight of the product comes down. The performance goes up. The warranty is a lot longer. Quality loves it. We love it. The profit margin loves it.”
John Winter , Mechanical Engineering Manager, Bird Technologies
“Siemens’ synchronous solver overcomes the order dependencies that have plagued history-based CAD programs by solving for the explicit and inferred constraints at the same time. The synchronous solver doesn’t use a history tree, but rather holds user-defined constraints in groups associated with the surfaces to which they apply…Ultimately, though, I believe this to be a transformative technology – one that represents an important inflection point in the CAD industry. If you hear someone say ‘that’s nothing new,’ don’t believe them. Synchronous technology is a big deal.”
Evan Yares, CAD Industry Analyst
“Synchronous technology breaks through the architectural barrier inherent in a history-based modeling system,” “Depending on model complexity and how far back in the history that edit occurs, users will see dramatic performance gains. A 100 times speed improvement could be a conservative estimate.”
Dr. Ken Versprille, PLM Research Director, CPDA
Talk to us now!

Ready to start designing better? Our gurus are standing by.

We can help help you to design better & faster in ways you never thought possible.
Talk to us now!