Solid Edge Add On Modules

EDGE plm Apps

Solid Edge Add On Modules

How You Gain an Edge with Solid Edge?

Solid Edge makes creating and editing 3D product designs faster and easier through our unique synchronous technology- combining the speed and simplicity of direct modeling with the flexibility and control of parametric design.
Solid Edge provides a complete sheet metal design system with support for the entire design-through-fabrication process. Straight brake, rolled or transition type components can be created complete with flanges, holes, relief and corner options. You can validate designs for manufacturing, document the bend sequence and send flat pattern DXF files directly to production.
Solid Edge makes it easy to design assemblies and manage part relationships, whether you’re dealing with a few components or hundreds of thousands of parts. Outstanding large assembly technology allows you to manage, build and view assemblies in real time, without sacrificing performance. Comprehensive digital prototyping capabilities allow you to build entire 3D digital prototypes and optimize your designs before production.
Solid Edge contains an innovative set of capabilities for the 2D documentation process. You can quickly and easily create production-ready drafting and documentation.
Bring your models to life with photo-realistic rendering. Solid Edge offers built-in rendering through integration with Luxion’s KeyShot technology, allowing you to create photo-realistic images and animations from within the modeling environment.
  • Advanced Sheet Metal Design – Best in its class.
  • Beautiful Photo-realistic Rendering – key shot included with Solid Edge ST8 Classic.
  • Synchronous Technology for Fast, Flexible Design – only system in the market today that can provide you revolutionary features like native editing.
  • Faster 2D Drawing Production – quickly and easily create production-ready drafting and documentation.
  • Unmatched Design Mobility – Design better – from anywhere – when you run Solid Edge 3D design software on the Microsoft Surface™ Pro.

Your CAD software should help you work smarter, not harder.

That’s why there’s Solid Edge, a hybrid 2D/3D CAD system that uses synchronous technology that finally frees you of the limitations of your traditional CAD software.

Want to edit dimensions easily?
Re-use imported data without the hassle?
They’re easy to do and more with Solid Edge.

Get the latest Solid Edge ST: download a full 45 days trial!

Solid Edge has proven successful in helping companies reduce engineering costs.

Start Here

Join Our Solid Edge ST Training Courses:

EDGE plm understands the importance and training to the successful adoption of our products. However no two companies are the same and their training requirements often require a different or tailored approach which is why we have developed our flexible approach to training and mentoring.

We offer scheduled classroom-style training, bespoke training to suit customer requirements as well as one to one mentoring for any of our customers around Australia and New Zealand. Our Solid Edge training courses are created with the aim to get participants up to speed with current industry software quickly and effectively, giving you and your company the competitive edge.

Our experienced and qualified instructors run a range of training courses designed to suit your exact requirements, whether this consists of scheduled classroom training at our offices, customised courses delivered at your site, or online sessions.

Please call us on 1300 883 653 or send us an email [email protected] for our latest training schedule or to enquire about specialised training and mentoring services.

Solid Edge Foundation Part 1

This course is the follow on from the initial foundation course. It covers a foundation review, providing an opportunity to revisit and answer any questions from the initial course. It covers Drafting in [...]

Solid Edge Foundation Part 2

This course is the follow on from the initial foundation course. It covers a foundation review, providing an opportunity to revisit and answer any questions from the initial course. It covers Drafting in far [...]

Solid Edge Sheet Metal & Framing

The course focuses on sheet metal design tools, from the creation of simple sheet metal folded parts to the adding of deformation features and the subsequent creation of flat pattern blanks and 2D drawings. [...]

Solid Edge Surfacing

Delegates attending this course must have completed the foundation course or have been using Solid Edge for a minimum of 3 months. This course offers an introduction to the concepts of surface modelling, particularly [...]

Solid Edge Advanced Assembly

This course is designed for users that wish to improve their overall Assembly knowledge and students will be given instruction on how to make full use of the advanced assembly modelling functions for both [...]

Solid Edge Advanced Part Modelling

The course aims to improve the productivity of users when designing with Solid Edge. It includes a knowledge assessment test and sessions aimed at the correct approach to advanced modelling techniques for parts and [...]

Femap 101 Training Course

Talk to us to find more details and the next available course. This course designed to improve the productivity of users when designing with Femap. It includes a knowledge assessment test and sessions aimed at [...]

Solid Edge Latest News:

1301, 2019

The End of the Powertrain Bias

Internal Combustion Engine vs. Electric Machine, this seems a famous game these days. Media, politicians, OEMs, car owners - all of them have their arguments and for one or the other reasons, they have their vision of where they place themselves in this fight. There is a lot of emotion and mistrust, misinformation and the claim of misinformation, aggression, and response. Diesel bashing here, pointing to insufficient range, burning batteries and recharging of plugin battery-electric vehicles with mobile ICE devices there.

 

The worrying thing to me is that even in our engineering world you get the impression that you have to choose and you have to choose apriori. It seems that even the world of powertrain engineers has become bipolar, you can either be pro-ICE or pro-E, you can either hug your internal combustion engine or tell the people ICE is dead, you can either tell people there is not enough Lithium on earth or oil, you say a V8 is music or it’s noise, you say too much NOx, Soot or CO2 stems from traffic or from power plants, there’s nothing in between. ICE engineers seem to fear someone takes away their beloved baby, E-guy seem to claim the work of thousands of engineers should go to the trash bin right away.

 

I call this the powertrain bias!

 

Now, honestly, like with many topics I have faced in my life I don’t know who is right and I would claim it’s not easy to tell that for anyone. We live in an increasingly complex world and there are many forces at work, legislation, customer expectation, politics, financial interests and finally human emotions. So, as an engineer, you try to rely on something that should give you the answer: pure science. Then you realize: even numbers can be bend, misinterpreted, miscommunicated. It’s clear that oil won’t last forever and that Lithium doesn’t. It’s clear that some may love the sound of an engine and others love the sound of silence. It’s like with anything – even in science - any party will come up with their study of proving they are right.

 

I truly believe it is this powertrain bias that is the most dangerous thing an engineer can jump onto in a world of incredibly fast-paced change.

 

That said, as powertrain engineers, we should share only one common goal and that is, make the move of a person from A to B as efficient, comfortable and – not to forget - enjoyable as possible thereby minimizing the negative impact on other people. I understand there are multiple trade-offs in this performance function and the weighting of the individual performance factors is a highly individual thing. Yet, we all should agree on one minimum consensus: As engineers, it is our job to push the limits of efficient, healthy, enjoyable and comfortable movement as far forward as we can without limiting ourselves in the design space by a-priori (bias) decisions.

 

 Blog_PowertrainBias_Teaser.png

 

Therefore here’s my call to all of you: Don’t get caught in that romantic vs. progressive powertrain trap! ICE guys, get over it and hug an electric machine, it won’t hurt. E-guys, step back and look at the amazing piece of engineering an IC engine effectively is. Let’s stay engineers in first place, push the Pareto front forward and make the best we can within the range of our expertise. Stay cool and fair when doing so. Get in touch with the other side and understand their reasoning. This is not a call for becoming emotionless, but it’s a call to reconsider what we should be emotional about: And that is creating great engineering value with our powertrain solutions. Here is my scientific study on the topic: In all times, 100% of all cars will have a powertrain!

Blog_PowertrainBias_InfoGraphic.png

 

So let’s all get together at the Simcenter Conference in Prague to celebrate the end of the powertrain bias. With two days of powertrain presentations from ICE to E, from system- through CFD simulation to test the table is all set. Siemens PLM is there to help you, with simulation- and test solutions on the ICE AND the E, there is no either-or in our portfolio, and hey, for those that are already in the middle of it, we have a solution for all you hybrids!

Together, we can make Prague the Woodstock of Powertrain Engineering. Looking forward to seeing you there.

 

With that, I leave it with a

 

“Peace!”,

the first powertrain-hippie on earth

 

 

 

[1] https://about.bnef.com/electric-vehicle-outlook/

[2] https://www.nytimes.com/2017/08/17/automobiles/wheels/internal-combustion-engine.html

[3] study by the first powertrain hippie on earth

 

 

1301, 2019

Towards a unified Simcenter solution for electric machine design


Electric motor.jpgHaving a scalable model enables you to use your favorite system simulation tool for various simulation purposes, all along different design stages.

 

If I look in particular at electric machines, the possibilities are numerous:

  • Simple quasi-static machine models are well suited for power budget or energy management assessment.
  • Simple dynamic models are typically used for machine controls development.
  • Non-linear dynamic equivalent circuit models can give more insight into the motor behavior with high current or under fault conditions.
  • You can also include the machine spatial dependency to take into account the effects of the slots or the magnets shape. This will give you access to torsional vibration analysis and winding current distortions. It could help you validate a controller with a very realistic motor model at early development stages.
  • Co-simulation is an interesting solution in case you need to assess imbalance conditions or high frequency dynamics.Various levels of model complexity in Simcenter Amesim.pngVarious levels of model complexity in Simcenter Amesim

On the downside, setting up all those different models require much information which is not so easy to get. Datasheets provide partial data on the main machine behavior. To go further and to fully take benefit of the Simcenter Amesim Electric Motors and Drive solution, this is largely insufficient. To address this challenge, you can use Simcenter Amesim in combination with a finite element tool to obtain a reduced model. This is a major enhancement we focus on to reinforce this Simcenter Amesim solution.

 

Thus, Simcenter Amesim offers co-simulation capabilities with Altair Flux and JMAG-RT. Moreover,  recently released Simcenter Amesim 17 supports the import of reduced Simcenter SPEED models, as you can see in the following video:

 

 

 

What is the value for the Simcenter Amesim Electric Motors and Drive solution users? 

They can now smoothly pass from a finite element model to a system simulation model without spending hours trying to understand the different software conventions, developing or maintaining complex scripts.

   

The link with other Simcenter solutions such as Simcenter SPEED, Simcenter Motorsolve and Simcenter MAGNET will be continuously strengthened in the upcoming Simcenter Amesim versions. 

1301, 2019

Neural networks & digital twins change the O&M in the wind industry

Today wind power represents 4.4% of the total generated power. By 2030, this is to increase up to 20%. The challenges for wind turbine manufacturers are wide-ranging: the aerodynamic performance of the blades, reduce weight, keep noise and vibration levels under control, ensure a durable design and improve its overall system performance.

 

The gearbox is the most critical part of the wind turbine. Either you send a technician up the turbine and do a manual check, or you attach sensors to the gearbox and monitor the results remotely on a computer. Both approaches work to anticipate failures and allow turbine owners to schedule for repairs. Obviously, this comes at a price. A high price. Can’t this be done more cost-effective?

 

Predicting the remaining useful lifetime of each wind turbine gearbox

 

Winergy, a global key provider for wind energy in Germany, teamed up with the Simcenter Engineering experts of Siemens PLM Software to estimate the remaining useful lifetime (RUL) of a complete wind park. Let’s be a bit more specific: 78 wind turbines – 35 SCADA channels – historical data stored over 4 years.

 

The Simcenter Engineering specialists tackled this issue by combining 2 approaches:

 

  1. Neural Networks
    The neural network was fed with information from different SCADA channels on the gearbox in combination with service data. Gearbox temperatures were defined as the most representative signals for a possible failure. Next, the neural network was trained on how a turbine reacts in healthy and faulty conditions. Winergy and Simcenter experts used the technique to accurately predict and detect failures early on.

  2. Digital Twin
    A digital twin makes the bridge between a virtual representation and the physical product. It helps to understand and predict product performance characteristics. Wind turbine modeling was combined with physical validation measurements in 1 turbine to validate the digital twin model. The digital twin model is fed with historic loads extracted from the SCADA in order to predict the remaining useful lifetime of the bearings and gear teeth in each gearbox.

 

This combined approach limits the need for physical prototypes, reduces development time, and improves the quality of the finalized product. 

 

Want to know more? Join us next week at the 11th Annual Offshore Wind Europe Conference & Exhibition in London, UK. Wim Hendricx, Simcenter Engineering expert for the Energy sector, will present this application case on November 28 at 9:20 AM.   

 

Wim-Hendricx-Winergy-quote.jpg

 

Interesting links:

 

Conference-banner.jpg

1301, 2019

Is this the electric vehicle that we’ve all been waiting for?

Uniti One is an EV that just makes more sense.

I have to confess: I have caught the Uniti fever. It all started last April when Werner Custers and I shot a little movie at the Uniti headquarters in Lund, Sweden, a hip university town about 30 minutes from Malmo. At this point, Uniti Sweden was still oozing that start-up vibe, but, unlike other stories I have followed over the years, the idea of the Uniti One, well, to paraphrase CEO Lewis Horne, it just made sense. Needless to say, I was hooked.

 

 

You probably noticed that Uniti One is a different kind of car. In a way, it is more of a driving experience than an automobile. Sure, it is a completely wired EV with four wheels, but it is designed for the new era of high-tech car ownership that includes things like car-sharing, subscription programs and possibly delivery-on-the-spot autonomous programs.

 

Uniti One Fleet _ Photo by Karl-Fredrik von Hausswolff.jpg

 

Definitely “not reinventing the wheel”

But the cool thing about Uniti is that the team didn’t stop with just reinventing the EV. Everything was up for disruption in the design and development chain. Need your NX model in VR? Just run it through a gaming engine and put on the VR goggles to see what happens. Forget the formal post-design feedback groups. Just put the car in a well-known electronics retailer for a while and ask to-be consumers what they really think. This disruption meant that the team moved fast – really fast.

 

A key secret to the speedy design process was the fact that Uniti adopted the digital twin idea from day one. The working digital twin, based on NX and Simcenter, was one of the main reasons that a very small team of young engineers could prototype three vehicles in four short months.

 

So what’s next?

After its start-up success, the team knew they had to change gears, roll up their sleeves and work on a production-ready version of Uniti One. They also knew they needed some serious automotive experience on the engineering side. This is why Sally Povolotsky recently joined Uniti.

 

As the Uniti Vehicle Development Director, she is working with her team of experienced automotive engineers at Uniti’s new R&D center in the High-Performance Technology and Motorsport (HPTM) cluster located around Silverstone, the iconic British F1 Grand Prix track. With some serious street cred in the EV and automotive industry, Sally knows what it takes to get a car on the roads of Europe and beyond. (See the attached pdf for the full story.)

 

Uniti One _ small _ Photo by Karl-Fredrik von Hausswolff.jpg

 

Save the planet

So with Uniti One shaping up nicely and an Industry 4.0 digital factory vision in place, Lewis Horne and the Uniti team seem to have their new automotive ecosystem literally on the right track towards a workable and sustainable future. From our side, we will definitely keep our eyes on events in the UK and Sweden for you. To be continued…

 

P.S. By the way, if you caught the Uniti fever as well: you can pre-order yours online for 149 euro at uniti.earth.

 

 

 

 

 

1301, 2019

Flutter tests, ground vibration tests, acoustics tests: need help?

So, these test procedures are giving you a headache.

 

Could you easily answer the questions below?

  • How to improve the flight flutter test using a commercial off-the-shelf solution to extract accurate eigenfrequencies, damping and mode shapes?
  • What are the different solutions (static aeroelasticity, flutter analysis, and dynamic aeroelasticity) used to define the flight envelope and define accurate flutter predictions?
  • How to increase efficiency in identifying modal parameters of large vibrating structures?
  • How to address aircraft environmental noise, from simple aircraft noise level measurements to an advanced sound quality assessment?
  • How to create a sound profile of the aircraft interior in minutes of flight testing?
  • How to clearly identify realistic paths for acoustic optimization?

Or are you currently struggling with your testing tools and processes? Find the answers to these and many others questions in our series of Simcenter on-demand webinars. The lectures are jointly given by Simcenter and industry experts and feature concrete application case studies.

 

Register today to one (or all) of our free on-demand webinars and learn how to increase efficiency in your flutter, ground vibration or acoustic tests.

 

Flutter webinar_tcm27-46727.jpg

 “Accelerate flutter clearance process and increase efficiency in the aircraft certification process”  - Register to the webinar.

 

Image - GE-3360 A&D Ground Vibration Test2_tcm27-32061.jpg

“Accelerate ground vibration tests and increase efficiency in the aircraft certification process.” - Register to the webinar.

16x9_Webinar Aircraft Acoustics_Image 2_tcm27-21885.jpg

“Towards aircraft noise reduction” - Register to the webinar.

 

Input, feedback on our webinar series? Don't hesitate to reach back to us on the Simcenter community website.

 

 

 

1301, 2019

Simcenter Amesim 17: ease the exhaust calibration process

Car-exhaust-system-optimization.jpgTo accurately assess the vehicle tail-pipe emissions, efficient modeling of exhaust systems is becoming a very important but also a very time-consuming task. The chemistry inside a catalyst is complex; that leads to many kinetic parameters to calibrate in order to obtain a predictive system simulation model.

 

The exhaust calibration tool has been greatly improved to Simcenter Amesim 17. It is designed to ease this calibration stage thanks to a detailed and user-friendly workflow as well as to go faster thanks to its adaptive optimization feature. Regardless of whether you work on a synthetic gas bench or driving cycle test data, the whole calibration process can be carried out through this Simcenter Amesim tool. 

 

Let me showcase how this flexible integrated workflow helps you to deal with all kinds of test data.

 

Let's take an example of a three-way catalytic converter. In an ideal calibration process, it will start with synthetic gas bench test data and a simple sketch:Picture1.png

 

Once you have built the sketch, the entire calibration process will be performed within the exhaust calibration tool, which contains 5 distinct stages and you can go back and forth within these stages as needed:

  • Sketch definition: this step allows you to specify the discretization of the same monolith. In the sketch above, the three-way catalytic converter is discretized into two elements to better capture the longitudinal temperature gradient.
  • Geometry definition: geometrical parameters for all the catalytic components can be edited at this stage and it gives an overview of the volumes and surfaces that characterize the monoliths.
  • Kinetic scheme definition: the flexibility of the monoliths in the Simcenter Amesim IFP-Exhaust library is characterized by the fact that any chemical reaction using the 12 standard gases of the library can be implemented in it. Therefore at this stage, it is possible to load a predefined kinetic scheme or to add user-defined reactions, and even both.

Picture2.png

 

 

  • Test data import: a database of tests that will be the reference results for the calibration has to be created at this stage. The calibration of a classical three-way catalytic converter on SGB test data requires different light-off tests for different space velocities and probably OSC (Oxygen Storage Capacity) tests: the database can be constituted with all these tests and contains both inlet and outlet data:

 

Picture3.png

 

  • Calibration: the final stage allows you to run simulations for every test from the database defined in the previous step. The kinetic parameters used for chemical reactions are editable, therefore it enables you to easily iterate on values.

 

Picture4.png

 

 

Indeed, this tool has greatly facilitated the process, nevertheless it still takes a long time to calibrate the complete kinetic scheme by hand. That's where the optimization feature can be of great help. You can launch it directly from this last step and a specific window allows you to set up the parameters and the objectives of the optimization, as well as the tolerance and the algorithm to use.

 

The next and often final step of an exhaust line calibration is the correction and validation of kinetic parameters on driving cycles. The exhaust calibration tool is also perfectly adapted for this task since you can add a new test for each driving cycle. In the same way, you can move until the calibration step and use concentration, mass flow rates or even cumulative masses to find how to fit your experimental data.Picture5.png

To sum up, the Simcenter Amesim exhaust calibration tool now enables accelerated test data import, batch processing and automated optimization of model calibration. 

 

Watch this video to see how it works:

 

Check out this article & learn more about aftertreatment simulation with Simcenter Amesim

Load More Posts
Contact The Support Team

Need support? The support team is ready to help you:

We can help you to design better & faster in ways you never thought possible.
Contact The Support Team